Notiz zur Solvatochromie von Azo-Farbstoffen

Von F. Gerson, E. Heilbronner, O. Neunhoeffer und H. Paul

Inhaltsübersicht

Die Lage (λ_{max}) und die Intensität (ε_{max}) des langwelligsten $\pi \rightarrow \pi^*$ -Überganges einer früher beschriebenen Reihe von Azo-Verbindungen wurden auf ihre Lösungsmittelabhängigkeit hin neu untersucht, wobei sich signifikante Abweichungen zu den seinerzeit veröffentlichten Werten ergaben.

In einer kürzlich erschienenen Arbeit von O. Neunhoeffer u. H. PAUL¹) wurden für die Farbstoffe I bis VIII, die den langwelligsten $\pi \to \pi^*$ -Übergang betreffenden absorptions-spektroskopischen Daten $(\hat{\lambda}_{\max}, \, \varepsilon_{\max})$ veröffentlicht. Diese Größen zeigten eine deutliche Abhängigkeit vom verwendeten Lösungsmittel (Hexan, Benzol, Methanol, Benzylalkohol), wobei vor allem der beträchtliche bathochrome und hypochrome Einfluß des Lösungsmittels Benzylalkohol auf Lage und Extinktion der untersuchten Absorptions-Bande bemerkenswert war. Da für Verbindungen vom Typus I bis VIII das Auftreten eines solchen, den Erwartungswert²) weit übersteigenden Effektes, im Zusammenhang mit Arbeiten über Elektronenstruktur und physikalisch-chemische Eigenschaften von Azo-Verbindungen³) von besonderem Interesse war, wurden die Messungen wiederholt und durch neue ergänzt. In der vorliegenden Arbeit sollen die Resultate dieser Messungen, die gegenüber den ursprünglichen Daten¹) einige Abweichungen ergaben, zusammengefaßt werden.

Sämtliche Messungen wurden mittels eines registrierenden Spektrophotometers (Beckman, Modell DK 1) aufgenommen. Die Auswertung der Absorptionskurven geschah nach einem, an anderer Stelle zu beschreibenden Verfahren⁴), welches im Prinzip darin besteht, daß die Kurve in der Nähe des Maximums durch orthogonale Polynome approxi-

¹⁾ O. NEUNHOEFFER u. H. PAUL, J. prakt. Chem. [4] 5, 212 (1958).

²) Vgl. z. B. S. HÜNIG u. K. REQUARDT, Liebigs Ann. Chem. **592**, 180 (1955); K. DIMROTH, Angew. Chem. **60**, 70 (1948).

³⁾ F. Gerson u. E. Heilbronner, Helv. chim. Acta 41, 1445 (1958); F. Gerson, J. Schulze u. E. Heilbronner, Helv. chim. Acta 41, 1463 (1958); F. Gerson, T. Gäumann u. E. Heilbronner, Helv. chim. Acta 41, 1481 (1958).

⁴⁾ E. HEILBRONNER, J. of applied Statistics (im Druck).

miert und der Scheitelwert dieser Näherungsfunktion bestimmt wird. Auf diese Art erhält man bei flachen oder stark asymmetrischen Maxima eine objektivere Schätzung für λ_{\max} .

Tabelle 1

Lage $(\lambda_{\max}$ in m μ) und Intensität (ε_{\max}) des Maximums der langwelligsten Absorptionsbande der Verbindungen I bis VIII in Gemischen von Benzol/Methanol. $\varkappa=$ Molenbruch Methanol. Standardabweichung der Wellenlängen-Angaben =0,4 m μ . Standardabweichung der Intensitäts-Angaben =300 Einheiten

Verbd.	lpha					
	0,00	0,25	0,50	0,75	1,00	
I	440,8	• 448,2	450,7	451,4	444,6	
	29 500	29000	30 300	30 800	32000	
11	450,1 29800	$461,2 \\ 30000$	465,2 31 500	466,3 32300	460,6 34300	
111	453,3 19 200	457,3 19100	457,7 19100	455,3 18900	449,2 19600	
IV	453,0	457,0	457,8	455,7	449,8	
	18000	17 700	17700	17600	18600	
v	461,3	467,6	470,6	471,5	464,8	
	28 800	28400	28 700	29300	31 200	
VI	471,4	478,3	482,2	483,1	478,7	
	31300	30 700	31 100	31 900	34500	
VII	468,9	472,3	473,1	471,5	466,7	
	19100	19000	19000	19300	20 700	
VIII	467,6	471,1	472,6	471,5	467,1	
	18900	18400	18500	18900	20 500	

In Tab. 1 ist λ_{\max} und ε_{\max} der uns interessierenden Bande für die Verbindungen I bis VIII in Funktion des Molenbruches \varkappa an Methanol im Lösungsmittelsystem Benzol/Methanol angegeben. Die in reinem Benzol ($\varkappa=0$) und in reinem Methanol ($\varkappa=1,00$) gemessenen Werte, die eine Wiederholung der bereits veröffentlichten Daten darstellen, stimmen mit jenen im großen ganzen überein, wenn man die Verschiedenheit der Aufnahmegeräte und der Auswerte-Methodik berücksichtigt.

In Tab. 2 wurden die entsprechenden Messungen an Hand von Lösungen in Cyclohexan, Benzylalkohol, β -Phenyl-äthylalkohol und in γ -Phenyl-propylalkohol aufgenommen, wobei Meßreihen in den beiden

Tabelle 2

Lage $(\lambda_{\max} \text{ in } m\mu)$ und Intensität (ϵ_{\max}) des Maximums der langwelligsten Absorptionsbande der Verbindungen I bis VIII in Cyclohexan und in den Alkoholen $C_6H_5-(CH_2)_n-OH$ mit n=1, 2, 3. $(n=1: \text{Benzylalkohol}, n=2: \beta-\text{Phenylathylalkohol}, n=3: \gamma-\text{Phenyl-propylalkohol}.)$

Standardabweichung der Wellenlängen-Angaben = $0.4 \text{ m}\mu$. Standardabweichung der Intensitäts-Angaben = 300 Einheiten

Verbindung	Cyclohexan	$C_6H_5-(CH_2)_n-OH$			
	:	n=1	n = 2	n=3	
I	424,4 31 000	472,5 30 800	465,1 29600	463,2 28600	
II	435,7 31 800	$483,7 \\ 33600$	478,4 32800	477,2 31300	
111	439,5 20 700	471,0 18 200	467,0 18300	466,5 17600	
IV	441,6 19100	470,9 17300	466,8 17100	466,2 16300	
V	442,2 29500	$488,1 \\ 28900$	482,8 28 200	$480,9 \\ 28000$	
VI	451,8 32400	498,8 31 300	494,3 30 600	493,4 29800	
VII	453,3 20 400	485,3 18400	483,5 18300	$482,5 \\ 18100$	
VIII	453,3 20 300	483,9 18300	482,6 18000	481,5 17900	

erstgenannten Lösungsmitteln schon in der zitierten Arbeit¹) zu finden sind. Während die sich auf Cyclohexan-Lösungen beziehenden Daten mit einer Ausnahme (VII) gut reproduzierbar waren, ergaben sich für

die in Benzylalkohol bestimmten λ_{\max} - und ε_{\max} -Werte zum Teil beträchtliche Abweichungen. Die früheren Werte, die in λ_{\max} bis zu 90 m μ und in ε_{\max} bis zu einem Faktor 3 von den oben stehenden differieren, täuschten den scheinbar außergewöhnlichen Umfang des Einflusses von Benzylalkohol auf Lage und Intensität der untersuchten Bande in den Verbindungen I bis VIII vor. Daß Benzylalkohol aber dennoch eine Ausnahmestellung innerhalb der verwendeten Lösungsmittel hat, ergibt sich aus dem Vergleich der λ_{\max} -Werte der acht Azo-Farbstoffe, gelöst in den Alkoholen der homologen Reihe C_6H_5 —(CH₂)n-OH (Tab. 2) sowie in Methanol und in Benzol (Tab. 1).

Eine bemerkenswerte Tatsache ist, daß die Verschiebung von $\lambda_{\rm max}$ in Abhängigkeit des Molenbruches \varkappa an Methanol (Tab. 1) keine monotone Funktion von \varkappa darstellt, sondern ein Extremum durchläuft, dessen Lage auf der Abszisse \varkappa in der Gegend von $\varkappa=1/2$ liegt. Eine eingehendere Analyse der in Tab. 1 und 2 vereinigten Daten soll später⁵) veröffentlicht werden.

Der CIBA Aktiengesellschaft in Basel danken F. Gerson und E. Heilbronner für die Unterstützung der vorliegenden Arbeit.

Zürich, Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule und

Berlin, Chemisches Institut der Humboldt-Universität.

Bei der Redaktion eingegangen am 2. Juni 1959.

⁵⁾ F. GERSON u. E. HEILBRONNER, Helv. chim. Acta (in Vorbereitung).